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LINEAR STABILITY OF SELF-SIMILAR FLOW:
8. IMPLOGING CYLINDRICAL AND SPHERICAL SHOCKS
IN THE C-C-W APPROXIMATION

I. Introduction

One of the critical limitations to achieving high compression in a
spherical implosion is the degree of symmetry that can be maintained. This
in turn has important implications for target fabrication techniques and
for laser or other driver designs,since it establishes the tolerances
required in the symmetry of these components.

An important issue for understanding imploding systems is the stability
of a converging shock wave. This shock wave might be used, for instance,
not only to compress the fuel, but also to provide the heating required
to create a central ignition region. The final temperature achieved will
depend on how nearly spherical the shock wave remains during the collapse
process and the shape of the shock at the time of reflection.

A certain inherent stability of a shock wave results from the well-
known fact that a shock wave with a smaller radius of curvature advances
faster than one with a larger radius of curvature. Thus, the part of a
perturbed shock front that initially lags behind will accelerate more
rapidly due to its smaller radius of curvature and so will tend to catch up
with the remainder of the shock wave. However, the perturbation may be un-
able to overtake the main shock, which is accelerating because of convergence,
or it may be overdriven, i.e., the perturbation may overshoot the stable position.

In order to discuss stability, it is necessary to define what is meant

by stable (or unstable) behavior. The usual definition of stability in
Manuscript submitted September 16, 1980.
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terms of a growing or decaying mode amplitude does not adequately describe
the situation in imploding systems. For example, the amplitude may not
tend to zero as fast as the average radius, or the collapse time may be

of the order of the period of oscillation of the mode. A more meaningful
number for small-amplitude perturbations is the rate of growth (or decay)
of the relative perturbation amplitude, i.e., the ratio of the perturbation
amplitude to the radius of the zero-order symmetric collapse solution

(Bernstein and Book, 1978).

Large injtial perturbation amplitudes may not decay
in the same way as small-amplitude perturbations (Fong and Ahlborn, 1979).

One can define a radial instability in terms of the maximum deviation

[/R._). Another

of the shock radius from the average radius (lR-Ra ave

ve
kind of instability (kink instability) occurs when a small portion of
the shock necks off from the central regiom (Fig. 1). In general, we
caanot speak of an imploding shock as being stable or unstable in a clear-
cut cense. Rather, we can ask whether it retains an acceptable degree
of symmetry after having collapsed to a volume sufficiently small for
practical purposes.

We have developed an analytic and computational model to investigate
the stability of converging shock waves in cylindrical and spherical
geometry. This represents an extension to smaller radii of the work of
Fong and Ahlborn (1979) on the linear stability problem. The model equations
are described in the next section, followed by a linearized analytic solutionm,
an account of the numerical model, a comparison of the numerical and analytic
solutions, an analysis of nonlinear behavior,6and an extension to problems

with a varying deusity in front of the shock.
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II. Model Equations

The motion of a converging shock wave can be computed with great J
accuracy by considering only changes in the physical variables across 4
the shock front, ignoring the fluid motion behind the shock surface. The
velocity of a shock front in a motionless undisturbed medium is normal to
the front.It may therefore be treated as a locally one-dimensional motion
in a channel whose boundaries are determined by the trajectories of the
shock front. These trajectories form imaginary ray tubes whose cross-
sectional area is related to the Mach number by an equation derived by
Chester (1954), Chisnell (1955), and Whitham (1957) (the C-C-W approxima- f
tion). The equation may be found by substituting into the compatibility |
equation for the characteristic moving in the direction of shock propagation
the fluid quantities determined by the Rankine-Hugoniot relations across i
the shock. Whitham (1958) has shown that this procedure, the simplest
method of deriving the C-C-W approximation, is equivalent to solving the
complete fluid equations while ignoring the characteristics which travel
away from the shock and are reflected back toward it. For this reason,
it is most accurate for accelerating shocks,where the reflected charac-
teristics are unable to catch up with the shock.

The result of this model is an equation for the Mach number M of the

shock as a function of the cross-sectional area A of the ray tube:

x(rza)udn . % .o, (1)
M2-1
where 2
2 2 1-0
AN = (2oHHL/MY) (4 Z S, (2)
and 2.t e 3
20M% - (y-1)




where Yy is the usual adiabatic index. The cross-sectional area of the

ray tube may be expressed in terms of the shock front velocity by the

kinematic relations

A=-An. (axV) xy (4)
é =-(I-nm) - (axv)xwy (5)
£=y=nv, (6)

where (‘) denotes a derivative with respect to time, n is the unit vector
normal to the shock front and r is the surface location.

In numerical integration, Eqs. (1) and (5) are used to propagate
the magnitude and direction, respectively, of the shock fromt velbcity in
terms of time, substituting A from Eq. (4). Equation (6) then advances
the shock front position by integration of the velocity. For small per-
turbations about symmetric (cylindrical or spherical) shocks, however,

solutions can be obtained analytically.




III. Linearized Analytic So

lutions

Since all collapsing shocks will eventually become strong, it is

useful to analyze the strong shock limit M>>1.

sound speed ahead of the shock is constant, in addition to being small, ¢

then Eqs. (1)-(3) reduce to

A/A - =\ viv .

where

and

v = M/a

R A

Y

Y-

Using familiar vector identities we have

n-mMXxXV)xvasawyVen

Thus usingEqs. (4) and (7)-(10) we have

If we assume that the

(AF) =V n=ax(@x? +n,

which only involves tangential derivatives of n.

We first look at the zeroth-order symmetric solution,

.
r

(-]

.
n
~

(A/t)

=v(t);
€y
-O;

.:V.

(r/v) = a/r,

where o = 1 (2) for cylindrical (spherical) geometry. Equations

(12)-(15) can be rewritten as

LA d . @
T ir (A/I)'-XE lntt;t

Integrating this once yields

t ralk

and finally

where R and w are constants.

r=R (wt)

const,
A/ (A+a)

d Q
ar nx .

(7

(8)

9

(10)

(11)

(12)
(13)
(14)

(15)

(16)

an
(18 j




Suppose we now linearize the equation by assuming n = n, + n, V= v0+ ME

-~

! r=r, + E(ro, t) ,where the subscript 0 refers to the zeroth-order symmetric
1 ~ ~ 22

solution, and the subscript 1 refers to a small perturbation about

this solution. From Eq.(5) we have

3y = - (T -mgng) - (g X V) ¥ & (19)
Expanding the gradient operator
V= VO - (VO §) . VO + ..., (20)
from Eq. (11) we have to first order
2..
(—le/v0 ) = VO n - (V0 g) : (VOEO . (21)
From Eq. (19) after some manipulation we have
L J
-z . = - - . .
2 -8 Vgn=- T -y - Yy (ag - B (22)
Here use has been made of the fact that 0, = e, and the fact that
Voo = VO(EO/rO) = (};-5050) It (23)
is a symmetric dyad. From Eq. (6) we have
E-ngv, oy, @)
Hence taking the dot product with n. yields
- = CE) = (25)
O - &= (- &) =v,
Thus Eq. (21) can be written as
L‘}Qi;=v [a,- £ + Vo .J+ £ + 7.V, * n
* 4 - 0 "1 2 0.0 4 00 0 (26)
Q
== Vo "I = mgng) Volngr )1+ & = Vo).

0

Now if we expand the perturbation in either cylindrical or spherical
harmonics by assuming a sum of linearly independent terms of the form
no * E = z(t) cos (m¢) (cylindrical) @n

= z(t) Pz (ggs (m¢) (spherical), 279

each of which can be treated independently, and define the mode-number-

dependent coefficient of the Laplacian by




Q= m (cylindrical) (28)
= L(24+2) (spherical), (287)
Eq. (26) becomes
-0l = /) (29)
Now using . -
C=v dz
0 dro (30)
we have
d d -
vy Sl Rt o (31)
0 0 0
From Eq. (18) we have
din v
dr ? - X: ! (32)
0 0

and after a little algebraic manipulation we get

2
a4 &, 2 d Q-a (33)
dr02 Ty dro r02

We now seek a solution of the form ¢ -~ T, B, where B is in general

a complex number which satisfies the indicial equation

A B(B-1) +a B+Q-a=0, (34)

or

B = sk-l-a + [Ow0)? - irq)? . (35)

Since we seek the ratio of the amplitude of the disturbance to that

of the zeroth order solution we look at

2 ky
trg = rpt e g TN L LORT - AT 2R (g

Since A

r, ~ ¢t (37)




% + vy ? - AAQI!’IZ(A«:)

E/ro ~ t (38)
For the lowest-order mode numbers B-1 is real and negative,
indicating that the disturbance is geometrically unstable:
+
B—l=->‘)\a,0 (39)

for 2=0 (spherical coordinates) or m=0 (cylindrical coordinates), and
6—1=-%—,-l (40)

for 2=1 (spherical coordinates) or m=1 (cylindrical coordinates).

For all mode numbers greater than unity B is complex, and there is

- (M) /(20)
0

with a frequency w = %T (42Q - (k+a)2]

a factor growing with a power-low dependence ~ r and a

factor which is oscillatory in £n T,

The real part is always negative and independent of mode number, while

the oscillatory part depends on the mode number:

Ao A+

c/rowro'zxf i—H—rpr , (41)

where

[47Q - () 2]
2 (A+a)

. (42)

In Fig. 2 we show the frequency in n t for the spherical harmonic
perturbation as a function of mode number for two different ratios of
specific heat, Y = 7/5 and Y = 5/3. Figure 3 shows the ratio r/r0 between
successive minima in the perturbation amplitude as it oscillates during
collapse. The ratio may be chosen so that at some prescribed degree of

compression the perturbation amplitude is a minimum.

%.
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Fig. 3 — Compression ratio between successive minima in perturbation amplitude during
perturbed shock collapse as a function of mode number,
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IV. Numerical Integration

In order to assess the importance of nonlinear effects on the mode
amplitude, the full nonlinear model equations were integrated with a code
similar to that of Fong and Ahlborn (1979). The code advances the equations
of motion of the shock front

I=v o (63
o _ M-

either in plane coordinates (for cylindrical collapse viewed in a plane
through the axis) or in cylindrical coordinates (for spherical collapse
viewed in the equatorial plane).

The equation for the cross-sectional area is not integrated directly,
but areas are taken from the kinematics of the integrated ray tubes. A
second-order-accurate space~and-time-centered algorithm is employed to
advance the grid locations and Mach anumbers. Thus the problem of computing
the shock shape is reduced to integrating a set of ordinarv differential
equations for the trajectories of a finite number of grid points located
along the shock front, and for their associated time-dependent Mach numbers.
The integration is subject to a timestep limit analogous to the Courant
condition for the one-dimensional fluid equations. This algorithm allows
for the propagation of so-called shock-shocks (discontinuities in the slope
and Mach number of the shocks predicted by the Whitham theory) in either
direction, since the scheme is centered and symmetric. The equations
for the shock surface are analogous to the one~dimensional Lagrangian
equation of motion, where the shock position takes the place of the fluid

position, the ray tube area takes the place of fluid density, and the Mach

12
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number takes the place of the fluid velocity. Thus many of the properties
of one-dimensional motion, e.g., disturbances traveling along characteristic
directions and nonlinear wave front steepening, show up in the shape

of the shock surface.

It was found necessary to redistribute the grid points to prevent
unacceptably short timesteps as the mesh points crowd together near the
shock-shock regions. The algorithm diffuses the grid points a small
amount parallel to the shock front in such a way as to make the distances
between points more nearly equal. This diffusion plays a role similar
to that of an artificial surface tension at interfaces.

To test the accuracy of the numerical procedure described above, we
compared the results of the calculation with those predicted by the self-
similar solutions for the collapse of an infinitely strong shock due to
Guderley (1942). The self-similar solution predicts a shock position given
yR=2C (-t)" with n = 717 for a vy = 1.4 gas according to Guderley.

This gives a shock Mach number as a function of radius

[ - n—l M
R=-nc(ery Tl gD (45)
Thus
yo r MO/ 3947 (46)
The C-C-W approximation for large M gives
A, R, 2 10’ ot 41 aM
A R Y+1 o MS -1 M 47)
with
5
o =( :{2—1] .
Y
This yields
_ 2Yo
M~ R (20+1) (yo+l) - R -.3941 (48)

13




'

The exponents agree with the analytic Guderley solution to within 0.0015.

In Fig. 4 we show the results of these models for the spherical convergence
of a shock with an initial Mach number of 57 at a radius of 0.112 cm.

The solid line is the analytic result of the Guderley solution. The
triangles are the numerical results of the C-C-W approximation using the
code described above with 25 mesh points around a circle in cylindrical
coordinates (describing a spherical implosion), Comparing the results

along the axis with those perpendicular to the axis, we see that the shock
remains spherical to better than 1% during the entire implosion and the

Mach number reproduces the Guderley solution with less than 0.57% error.

14
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Shock Mach Number —=

Spherical Shock Collapse

200
I One Dimensional Fluid Code
180 & Numerical Shock Integration
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160
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Radius —=

Fig. 4 — Comparison of analytic and numerical integration for self-similar spherical shock

collapse (Guderley problem).




V. Comparison of Results of Linearized Model and Nonlinear Integration

In Fig. 5 and 6 we show the results of the analytic and numerical
integration for m&de numbers 2, 4, and 8 for cylindrical and spherical
collapse. The solid lines are the analytic formulas and the circles show
the numerical results. To insure beginning in the linear regime the initial
amplitude of the modes was chosen such that C/to = 10-3. Since the system
of equations is second order in the perturbed shock location, both the
amplitude and the velocity of perturbation must be specified. For these
cases the velocity was chosen to be zero. This then uniquely determines
the phase of the oscillation. The phase angle between the amplitude and

the velocity is determined by the mode number and the specific heat ratios:

¢ = tan L [Z(A—a (49)

)\+a)p]

Agreement appears very good until the mode amplitude becomes greater
than a few percent. At this time nonlinear effects which can generate modes
other than primary one drive the solution away from the linear result.
Nonlinear steepening of the wave frént generates higher order modes which begin
to dominate the solution. 1In Fig. 7 we can see the form this takes. This
figure shows the successive wave front shapes for an £ = 8 spherical har-
monic perturbation initialized with a large initial amplitude in order to
show the effects of a large compression. As the shock collapses, the
wave fronts begin to form cusplike-shapes in the region where the shock
is left behind. For sufficiently large amplitudes a true cusp forms and
the simple shock front no longer exists. It is replaced bv a system of
reflecting shock waves (see Fig. 8), which, however, are not treated in
the present model. When this occurs a large portion of the shock energy

can be left behind in the reflected shock system, thus decreasing the

16




| compressional effect of the imploding shocks. Solutions of this type are

referred to below as having kink instabilities in the shock fromt.

17
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VI. Nonlinear Modeling

In order to investigate more carefully how these kinks form and
propagate, we look at perturbation in the form of a simple spherical
cap of radius smaller than the initial mean shock radius. This shock cap
intersects the main shock with an angle § at a colatitude B, as shown
in Fig. 9. For the purpose of this investigation the Mach number around
the shock is assumed uniform at M = 10. In Fig. 10 we show the limits of
stability for 8§ as a function of B, In addition we show the stability
result in terms of Gro/r0 as a function of 8 (Gro/ro is geometrically
related to ¢ and B). When either § or B becomes too large, the shock front
is transformed into a nonlinear cusp-type regime instead of reverting to
a more spherical form and oscillating. From Fig. 10b we can see that this
is related to the initial perturbation and is a function of B. In each
case instability is defined to occur if a cusp shock is formed before
r/r0<10-2. This arbitrary definition is necessitated by the fact that all
perturbations, given sufficient compression, eventually evolve into the
cusp-shaped form. Realistically speaking, however, compressions of 106 are
more than sufficient to achieve the compression and temperature rise
necessary for ignition in pellet fusion.

Even for these single cap perturbations, oscillatory behavior is apparent
for sufficiently small initial amplitudes. Let us compare the radius of
the first minimum of the average deviation from a spherical or cylindrical
shock for the cap perturbation to that for Legendre polynominal whose first
zero forms the same angle as the 8 for the cap perturbation. We see from
Fig. 11 that at least for smaller 8 (i.e., larger ) the oscillation period

is nearly the same. This indicates that the oscillation period (i.e., the

22
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time or radius between minimum deviations from symmetric implosion) can
be reasonably well predicted for arbitrary perturbations by matching to
the lowest order Legendre polynominal which fits the perturbtation. 1In
Fig. 12 we show a stable case where the behavior about a nearly spherical
implosion is oscillatory up to a compression of rO/r = 10. In Fig. 13 we
show an unstable case where a cusp is clearly forming after a single over-
shoot of the perturbation and a compression of rO/r = 4.

From these results we see that two interdependent factors control
when the nonlinear kinks will begin to form. One is the wavelength of
the perturbation and the other is the angle at which the perturbation

. intersects the mean radius. The smaller the wavelength, the larger the angle

that is tolerable. Note, however, that this angle and the mode amplitude

are not independent. In terms of amplitude, the shorter the wavelength,

the smaller the amplitude of disturbance that can be tolerated.

23




Fig. 9 — Initial perturbation of a spherical shock may be represented in terms of a cap at one
pole with a radius of curvature smaller than the main shock. The perturbation magnitude §R,
intersection half-angle #, and deviation angle § are related by geometry.

24




5 UNSTABLE

STABLE
20 —

Fig. 10(a) — Stability limits for the spherical cap perturbation are
given as a function of the deviation § and intersection angle g
as defined in Fig. 9. Instability is defined to occur when a kink
forms before a compression radius R/R<0.01.
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Fig. 10(b) -— Stability limits are shown as a function of (5 R/R)0 and
8. These two graphs are connected by simple geometric relations.
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Fig. 11 — Compression ratio at the first minimum of 5R/R as a function of intersection
angle. Open circles represent results obtained with Legendre polynomials, where § is the
angle to the first zero.
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VII. Effect of density variation

Equation (1) was derived assuming a uniform density and temperature
ahead of the shocks. The C-C-W methodology does not require the medium
ahead of the shocks to be uniform, and we shall now investigate the effect
a non-zero density variation in the undisturbed medium. However, we do
not allow the density to increase rapidly enough that the shock decelerates.
This would violate the important assumption that returning characteristics

are negligible.

Gl 4

The compatability relation along the inward-directed characteristic

is given by

dp + padu + —

uta

2
Pa_ & .o, (50)

while the Hugoniot relations behind a strong shock (M»®) are given by

U= v
Y+1 i
2 -9 - (51)
3 ps—Y+—1 pv spuv H
+ -
e S

2 _yp _ 2y(y-1) 2
a 0 (wDn2 Vo

where u is the fluid velocity behind the shock, p is the pressure behind
the shock, p is the density behind the shock, and p is the undisturbed ;

density. Differentiating the relation for p we get

2 2 .- 4 -
dp Y+ v- de + ;:I p vdv (52)
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Combining Eqs. (50-52) we have

2_ 255, (b2 gy 5 -2 A— -2da (53
5 VB + G T Wy P+ oA T VI v

or

-1 -1

dv _ _ x+2 2y dA _ 2y , 4o
v 5 G 2A- CND 3 ) (54)

If we now write this in the form of Eq. (7) we have
A (v/v) = -A/A - & B/B . (55)
Using Eqs. (4), (6) and (10) and the relation

(56)

Ol e
[ ]
i<

.

pe]
oI

we have

(A/v).-V-E+Kn-V2n5. (57)

Assuming a density profile of the form § - r 9 the zeroth order

symmetric equation becomes similar to Eq. (15),

(A1) = (a-k )/t . (58) .
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This has a solurion analogous to Fq. (18),

A (A+a-<g)

\ r =R (ut) (59

The effect of a positive q (density increasing toward the axis) is to cause
the shock to accelerate more slowly than the q=0 case. (A negative g
will cause the shock to accelerate faster).

Again linearizing the equations as in Section 2, we have to first

order

(-Xv v} = oy = (746): () + [ « ny* Voo B

. 0
- - (60)
=% (VE) -7 ,8np +n, - A € - VO &n 0}
Using vector manipulations similar to those in Section 2, we obtain
¢ i
- .C - = - L] - L d .— -
(An,*§ /vo) ‘70 [(§ 901‘0) V (ng:8)] + £ VO (a/ry) +
(61)
£ . =
nyé ¢ VOVO n p

The last term of Eq. (61) adds an additional term to Eq. (29), given by

ny & 97, in o =cz(Rnp) |, (62)

where the double prime indicates a derivative with respect to o

Thus Eq. (61) becomes
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[3

- (AZ/v

0'5 = (Q-d+'<q)c/r(2) (63)

Now from Eq. (53) we get

dinv

0 _ _ _o-xg -1
dr A o > (64)
0
and using Eq. (30) we have after a little algebraic manipulation
3 a?r ; aoxg _dg | Qeodig £ =0 (65)
/ VA = .
dro2 rO dro rG
The resulting indicial equation is
AB (B-1) + (a-Kkg) B + (Q-atKq) = 0, (66)
or
. 2 5
3 = fA-a+ kg + [(M+a—xq)” - 43Q] /21 . (67)

We note from this result that the effect of including density variation
is found to first order by replacing everywhere the term a by x-Kkq.
That is, the acceleration normally due to the geometric factor a is modified
by an additional term < q related to the acceleration caused by a density
variation. Positive q (density increasing toward the axis) has the effect
of reducing the acceleration due to geometric convergence. For sufficiently

large q the acceleration vanishes. This situation, however, violates the
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assumption in the C-C-W model that the shock system is accelerating. The

ratio of the dJdisturbance amplitude to the zeroth-crder radius continues to

"

satisfy C/r0~ t , with the frequency appropriately modified. In terms

of the zeroth order radius, however, the growth becomes c/r0~ ro-(A+a_Kq)/(2)).
A positive g thus decreases the relative growth of the shock perturbation

as a function of the shock radius.
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VII. Conclusions

The C-C-W approximation, which appears to be very accurate for com-
puting converging shock waves, predicts that the converging shock is always
unstable, in the sense that the ratio of the perturbation size to the
average radius diverges at the time of collapse. The cylindrical and
spherical cases differ only quantitatively. The growth rate is only a
power law, however, and therefore is not as serious as an exponential growth.
For mode number greater than unity, the perturbations oscillate in 1ln t
with a mode-number-dependent period. The amplitude growth, however, is
independent of mode number.

For sufficiently large amplitude the linear behavior breaks down
and the solution develops nonlinearly into a kink form, where a reflected
shock is left behind in the material,serving as a potential loss of shock

energy in the collapsing shock.
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